WebZonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2024. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Proc. of IJCAI. Google Scholar Cross Ref; Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2024. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proc. of AAAI. 3482--3489. WebFeb 19, 2024 · Graph convolutional neural network provides good solutions for node classification and other tasks with non-Euclidean data. There are several graph convolutional models that attempt to develop deep networks but do not cause serious over-smoothing at the same time. Considering that the wavelet transform generally has a …
Graph WaveNet for deep spatial-temporal graph modeling
WebAug 15, 2024 · In this paper, a novel deep learning framework Spatial-Temporal Graph Wavelet Attention Neural Network (ST-GWANN) is proposed for long-short term traffic … WebWith the development of deep learning on graphs, powerful methods like graph convolutional net- ... ST-ResNet (Zhang, Zheng, and Qi 2024) is a CNN based deep residual network for citywide crowd flows pre-diction, which shows the power of deep residual CNN on ... Graph WaveNet (Wu et al. 2024) designs a self-adaptive matrix to the organs of the endocrine system include
Graph WaveNet for Deep Spatial-Temporal Graph …
WebTo overcome these limitations, we propose in this paper a novel graph neural network architecture, {Graph WaveNet}, for spatial-temporal graph modeling. By developing a … Web大家好,本周和大家分享的论文是Graph WaveNet for Deep Spatial-Temporal Graph Modeling。 这篇论文针对的问题是道路上的交通预测问题。 道路上有固定若干个检测点实时监测记录车流量,要求从历史车流量 … WebJan 29, 2024 · Spatial-temporal graph neural networks (ST-GNN) are emerging DNN architectures that have yielded high performance for flow prediction in dynamic systems with complex spatial and temporal dependencies such as city traffic networks. In this research, we apply three state-of-the-art ST-GNN architectures, i.e. Graph WaveNet, MTGNN and … the organs of the human body